
Web Services
A Three(?) Part Tutorial

Part II
Reprise, Tomcat, and (maybe) SOAP

First – in Response to some
Suggestions and Questions

� Java in 5 minutes

� Lexical Analysis vs Compilation and XML

� An XML walker

� Pruning an XML tree

Java in 5 minutes
(for C++ programmers)

� Almost any executable line of Java code will be
understandable to C++ programmers.

� Arithmetic – same (but data in Java is uniform)

� Flow control – same (but Java programmers tend to
use try/catch exception handling more)

� function invocation – same

� What's missing?

� * and -> pointer dereferencing

� Everything in Java is within a class

What is missing in Java?

� No operator overloading

� No template library (but generic classes are
expected, perhaps within a year - “ tiger” release,
Java 1.5)

What Features does Java Provide?

� Memory management – no more calls to delete

� Built in threading – every object is-a – monitor

� Threads can wait on and signal any object

� Code can be synchronized at the block or method
level

� A single inheritance tree, from Object

� all methods are “virtual”

� Interfaces used as a lightweight (but design friendly)
multiple inheritance.

� A huge standard library

Details

� Java Virtual Machine makes programs machine
and O/S independent

� Very clever JVMs provide run-time optimization

� The run time stack contains only primative data
types and references (very smart pointers)

� All dynamic memory (via new) is in the “heap”
which is an object – that is, it protects itself from
malicious and stupid programmers.

Basic Form

� Generally, 1 class is in 1 and only 1 file. (Files
can, but seldom do, have more than one class.)

� Every class has a “main” method – the JVM is
told which class to run.

� Most main methods can be used for regression testing
of the class

� Every class has (via Object) an equals(),
toString(), and hashCode() method.

� Get/Set semantics makes “Beans” amenable to
automatic programming.

A Simple Class
public class Circle {

 private double radius;

 public Circle() {
 this(1.0);
 }

 public Circle(double r) {
 setRadius(r);
 }

 public void setRadius(double r) {
 assert r >= 0.0 : "radius must be >= 0.0";
 radius = r;
 }

 public double getRadius() {
 return radius;
 }

 public double getArea() {
 return Math.PI*radius*radius;
 }

 public boolean equals(Object o) {
 return radius == ((Circle)o).getRadius();
 }

 public String toString() {
 return "Circle with radius " + radius;
 }

 public static void main(String[] args) {
 Circle c1 = new Circle(1.0);
 Circle c2 = new Circle();
 System.out.println(c1 + " has area " + c1.getArea());
 if (c1.equals(c2))
 System.out.println(c1 + " " + c2 + " are equal");
 Circle c3 = new Circle(-4.0);
 }
}

What Drives People Nuts

� package/import

� package is a mix of namespace and directory – e.g.
“package gov.bnl.Rhic”

� Somewhere, there is a directory tree .../gov/bnl/Rhic/

� When you are compiling or running, you must know where
this tree is (CLASSPATH environment)

� import is not include

� It does tell the compiler what packages to look at (for
signatures etc.) when an unknown name appears.

� You can always use fully qualified names instead

Why You Should Consider Java?

� Fast enough, probably faster on a lifetime basis

� Much easier than C++ (you don't have to be
nearly so bright to program well with Java)

� Truly is portable

� If you need C++, you can use it (JNI, Corba, etc.)

� If not Java, then at least consider the JVM

� virtually any language will run on the JVM

� It drives Bill Gates nuts.

Questions from Last Week

� “ I don't get the difference between SAX and
DOM”

� Traditional compilers have (at least) 2 phases

� Lexical analysis

� type, identifier, open paren, identifier, comma, identifier, close
paren, open curly, close curly

� Compilation – tree building

� Compilation Unit

� function declaration

� function header/function body

� In this view, SAX is the lexical analysis, DOM is
the compilation. On occasion, SAX is enough.

SAX Classes

� SAX makes use of a number of classes

� ContentHandler – this is an interface that defines 10
or so “call-back” methods. When the XML document
is being read, every important lexical junk generates a
call to one of these methods

� XMLReader – this is the scanner than reads the XML
data and generates the proper calls to the Content
Handler

� InputSource – wraps a byte/character source for the
XML data

� Example – has to do with the next question

Question 2 – Pruning an XML
Document

� DOM stores the entire XML document in
memory

� This may be too demanding of space and time
resources

� One may know in advance not to follow certain
branches of the XML “ tree” .

� SAX scans the XML linearly and is in an ideal
position to ignore large chunks.

� DOM gives a better representation in memory

� So – why not use both?

Example 1 – Prune out the Authors
and all inside the Author Element

� SAX will provide us with each XML token

� Pruner will look for any number of elements

� If one of the elements to be pruned is found, it will
start skipping

� When the skipping element ends, it will start
processing again.

� Anything not pruned is written to some output
stream.

Recall, the XML Document

<?xml version="1.0" encoding="UTF-8"?>

<!--
 Document : DesignPatterns.xml
 Created on : September 7, 2003, 12:52 PM
 Author : Dave Stampf
 Description:
 Purpose of the document follows.
-->

<book isbn="0-201-633511-2">
 <title>Design Patterns</title>
 <subtitle>Elements of Reusable Object-Oriented Software</subtitle>
 <author>Eric Gamma</author>
 <author>Richard Helm</author>
 <author>Ralph Johnson</author>
 <author>John Vlissides</author>
 <publisher>Addison-Wesley Publishing Company</publisher>
 <copyright>1995</copyright>
 <hardcover />

</book>

Pruning with SAX – 1
import java.util.* ;
import java.io.*;
import javax.xml.parsers.* ;
import org.xml.sax.*;

public class Pruner implements ContentHandler {

 private Vector pruneAt; // elements to prune
 private PrintStream ps; // where the output goes
 private boolean skip = false; // skipping pruned parts
 private String skipTo = ""; // what started the pruning

 /* * Creates a new instance of Pruner * /
 public Pruner() {
 pruneAt = new Vector();
 }

 public void addPrunePoint(String s) {
 pruneAt.add(s);
 }

 public void setOutputStream(OutputStream os) {
 ps = new PrintStream(os);
 }

 public void startDocument() throws SAXException {
 ps.println("<?xml version=\"1.0\" encoding=\"UTF-8\"?>");
 }

 public void characters(char[] ch, int start, int length) throws SAXException {
 if (!skip) { // if not skipping, copy characters
 for (int i = start; i < start+length; i++) {
 ps.print(ch[i]);
 }
 }
 }

 public void endDocument() throws SAXException {
 ps.close();
 }

 if (skip & skipTo.equals(qName)) { // see if it is time to stop skip
 skip = false;
 } else {
 ps.println("\n</" + qName + ">");
 }
 }

 public void startElement(String namespaceURI, String localName, String qName, Attributes atts)
throws SAXException {
 if (!skip) { // if we aren't skipping, see if we should
 if (this.pruneAt.contains(qName)) {
 skip = true;
 skipTo = qName;
 } else { // otherwise, ouput start of element
 ps.print("<" + qName + " ");
 if (atts != null) {
 for (int i = 0; i < atts.getLength(); i++) {
 ps.print(atts.getQName(i) + "=\"" + atts.getValue(i) + "\"");
 }
 }
 ps.println(">");
 }
 }
 }

 public void startPrefixMapping(String prefix, String uri) throws SAXException {
 }

 public void endPrefixMapping(String prefix) throws SAXException {
 }

 public void ignorableWhitespace(char[] ch, int start, int length) throws SAXException {
 }

 public void processingInstruction(String target, String data) throws SAXException {
 }

 public void setDocumentLocator(Locator locator) {
 }

 public void skippedEntity(String name) throws SAXException {
 }

Pruning with SAX – 2

 // test the Prune content handler.

 public static void main(String[] args) throws Exception {

 Pruner p = new Pruner();
 p.setOutputStream(System.out);
 p.addPrunePoint("author");

 SAXParserFactory spf = SAXParserFactory.newInstance();
 SAXParser sp = spf.newSAXParser();
 XMLReader xr = sp.getXMLReader();

 xr.setContentHandler(p);

 Reader r = new FileReader("C:/WebServicesTutorial/DesignPatternsWithDTD.xml");
 InputSource is = new InputSource(r);
 xr.parse(is);
 }
}

And the Output...

<?xml version="1.0" encoding="UTF-8"?>
<book isbn="0-201-633511-2">
<title >
Design Patterns
</title>
<subtitle >
Elements of Reusable Object-Oriented Software
</subtitle>
<publisher >
Addison-Wesley Publishing Company
</publisher>
<copyright >
1995
</copyright>
<hardcover >
</hardcover>
</book>

This Doesn't Exactly Answer the
Question!

� We don't have anything in memory to work with
after this program runs – we really want an XML
Document

� But, the old Unix concept of a pipeline can save
the day – too bad Java is portable to systems that
might not have Unix shells...

� The following example shows how it might be
done internally to Java (using Threads as well!)

Pipelined XML Processing – 1
import javax.xml.parsers.* ;
import org.xml.sax.* ;
import org.w3c.dom.* ;
import javax.xml.transform.* ;
import javax.xml.transform.dom.*;
import javax.xml.transform.stream.*;

public class PrunedBook {

 private PipedOutputStream pos;
 private PipedInputStream pis;

 private Pruner pruner;
 private InputSource is;

 /* * Creates a new instance of PrunedBook * /
 public PrunedBook() throws Exception {

 // create a pipe for the two threads - the pruner and me

 pos = new PipedOutputStream();
 pis = new PipedInputStream(pos);

 // create the Pruner

 pruner = new Pruner();
 pruner.setOutputStream(pos);
 pruner.addPrunePoint("author");

 // access the XML file

 Reader r = new
FileReader("C:/WebServicesTutorial/DesignPatternsWithDTD.xml"
);
 is = new InputSource(r);

 // OK - let the pruner do its work in a separate thread.

 (new Thread(new Runnable () {
 public void run() {
 try {
 SAXParserFactory spf =
SAXParserFactory.newInstance();
 SAXParser sp = spf.newSAXParser();
 XMLReader xr = sp.getXMLReader();

 xr.setContentHandler(pruner);
 xr.parse(is);
 } catch (Exception e) {
 }
 }
 })).start();

 // while the pruner is working, one can start up DOM
 }

Pipelined XML Processing – 2

 public void process() throws Exception {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();
 InputSource is = new InputSource(pis);

 Document doc = db.parse(is);

 // transform into output again

 TransformerFactory tf = TransformerFactory.newInstance();
 Transformer t = tf.newTransformer();
 t.transform(new DOMSource(doc), new StreamResult(System.out));
 }

 public static void main(String[] args) throws Exception {
 PrunedBook pb = new PrunedBook();
 pb.process();
 }
}

Remarks

� There are more elegant (but more complicated)
ways to do the same thing using XMLFilter to
handle the SAX processing, but one still has to
make the transition to DOM

� There are some loose ends, but ...

� Notice how the factory pattern showed up 3 times

Recap

� Web Services

� XML

� XML Libraries

Web Services Definition

� A web service is a software system

� identified by a URI

� with public interfaces and bindings are defined and
described using XML

� whose definition can be discovered by other software
systems.

� and these other software systems may then interact
with the Web service in a manner prescribed by its
definition, using XML-based messages conveyed by
Internet Protocols.

A Simple Architecture Example

Application
1 Accesses Registry
2 Wraps in SOAP
3 Sends HTTP req.
4 Gets HTTP resp.

UDDI
Registry

HTTP request Web Service
0 register
1 Process Soap
2 Perform Service
 (may be complex!)
3 Send Response

HTTP response

WSDL

XML – Extensible Markup Language

� One technique formatting data that provides

� Structure

� self-defining

� machine independent

� well formed/validity checks

� standardized libraries for access in multiple languages

� Even Bill Gates likes it.

Homework

� Find the proper XML libraries for your favorite
language, get them installed and create a Hello
World XML file. (If Java, install the “ jwsdp”)

� Write a program to “walk the tree” and pretty-
print out the tags. I'll show you mine next time

� Find any data format application you have now
and re-phrase it in terms of XML. Write a simple
output method and some useful access methods.
Then, stand back.

Walking the DOM Tree
(everything is a Node)

import java.io.*;
import javax.xml.parsers.*;
import javax.xml.transform.*;
import javax.xml.transform.dom.*;
import javax.xml.transform.stream.*;
import org.xml.sax.InputSource;
import org.w3c.dom.*;

public class Walk {

 public Walk(Reader r) throws Exception {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setValidating(true);
 DocumentBuilder db = dbf.newDocumentBuilder();
 InputSource is = new InputSource(r);

 Document doc = db.parse(is);
 Node root = doc.getDocumentElement();
 walkTheDoc(root,0);
 }

 private void indent(int n) {
 while (n-- > 0) System.out.print(" ");
 }

 public static void main(String[] args) throws Exception{
 Reader r = new

FileReader("C:/WebServicesTutorial/DesignPatternsWithDTD.xml");
 Walk b = new Walk(r);
 }

 private void walkTheDoc(Node n, int in) throws Exception {
 // ignore white space
 if (n.getNodeName().equals("#text")) {
 if (n.getNodeValue().trim().length() == 0) return;
 }
 indent(in);
 System.out.print(n.getNodeName());
 if (n.getNodeValue() != null) {
 System.out.print(": " + n.getNodeValue());
 }
 System.out.println();
 NamedNodeMap nnm = n.getAttributes();
 if (nnm != null) {
 for (int j = 0; j < nnm.getLength(); j++) {
 indent(in+1);
 Node attr = nnm.item(j);
 System.out.println(attr.getNodeName() + ": " + attr.getNodeValue());
 }
 }

 NodeList nl = n.getChildNodes();
 if (nl == null) return;
 for (int i = 0; i < nl.getLength(); i++) {
 Node child = nl.item(i);
 walkTheDoc(child, in+2);
 }
 }

}

Finally – New Ground

� If you are to have a web service, you need some
piece of software that

� listens on a well known port

� determines which piece of software has to be started

� starts up the software, quickly and safely

� connects the external client to the service

� At its core, this is simply an http server (well,
maybe without the quickly and safely part...)

Tomcat

� Tomcat is a Java Servlet container and web server
from the Jakarta project of the Apache Software
Foundation (http://jakarta.apache.org)

� Provides basic static web page and cgi program
support.

� It provides a “container” to run specific types of Java
classes (those that extend the HttpServlet class)

� It isn't quite as fast or flexible as Apache for normal
web services

� It's free.

� It's written in Java, so it is portable

Servlets

� Servlets are simple classes that implement at least
one of the methods:

� doGet or doPost for the normal Web form access

� doPut, doDelete

� getServeletInfo

� init and destroy – for acquiring and releasing
resources at the beginning and end of its life.

� Some examples later

Alternative to Tomcat?

� They probably exist – WebSphere, .Net, etc.

� Tomcat stands out due to

	 its cost (free) as part of the open source movement

	 it has lots of real-time experience behind it

� Important to remember

� The client should care less (i.e. no browser should be
concerned with the http server software

� The server program should care less (i.e. no html
designer/cgi programmer should be concerned about
the http server software

� Issues are configuration... (which is plenty!!!)

Installation

� Install Java first

� Get the right media from apache.org (mostly a
matter of the correct packaging – I don't think
there is any “binary” code in the distribution)

� Alternative, get jwsdp from Sun.

� Install somewhere

� By default, it listens on 8080 for incoming requests

� Explore a little – see the web interface

� It works ok on a standalone PC.

Tomcat & Webapps

� Tomcat has the concept of a web application

� partly from the world of java web services

� also from the world of Java Enterprise Edition (which
we will not cover here)

� Most Java IDEs support this concept as well and
make it relatively easy to have a develop – load –
test cycle.

“Web Applications” Directory
Layouts

� Base Directory – any name you please

� html documents

� jsp pages

� other images/sounds/etc.

� WEB-INF directory

	 web.xml – deployment descriptor

	 classes directory

 various java classes

	 lib directory

 various “ jar” files

Development Cycle

� Moving that many files and directories is a huge
pain

� WAR files

� A WAR file is-a JAR file that contains the above
structure

� A JAR file is-a tar file with a slightly better toc
(manifest)

� Tomcat does not need the expanded files – it can
read and deal with the WAR file directly.

� So, there is only 1 file, the WAR file, to move

Example 1 – an HTML page

� Using Netbeans

� Create a “web module”

� Look at the web.xml file (part of the servlet spec)

	 There is a global web.xml file that is read first

� create a web page

� war it

� transfer it

� test it

Example 2 – a Java Server Page

� Again, using Netbeans

� Use the existing “web module”

� Create a jsp

� Look at the web.xml file

� war it

� transfer it

� test it

	 Notice the sizable delay on the first run – that is the
“servlet” being compiled

Example 3 – Servlet Example

� Use Netbeans to create

� Compile and view new web.xml

� Transfer & Run

� Modify the web.xml a bit & rerun

Example 4 – A Simple Form/Servlet

� Use Netbeans to create both

� Compile

� Load

� Test

At the Brink

� The Add servlet is getting close to what we need
for a “web service”

� A simple URL access
(http://dq.arm.gov:8080/test1/sum?x=3&y=9)

� But, more complex problems will have more complex
parameters, and do we really want to re-invent
passing parameters for each service?

� SOAP – and XML Wrapper will help us standardize
the client access

Response

� The Sum servlet returns a response to the client,
but in the form of an html file

� fine for humans, but for machines?

� Could you write an html parser?

� Clearly – the same problem in the other direction,
so once again, SOAP and XML to the rescue.

And other problems

� Can we skip all this web stuff and just move to a
(conceptual) RPC?

� How to represent a web service to the world?

� How is the service found?

Coming Up Next

� SOAP

� A Simple (real) Web Service

� WSDL

� UDDI

Homework

� Install Tomcat somewhere – even on your PC

� Look at the sample programs

� If you are a Java programmer

� Create a database on the server and have the servlet
access the database in response to a request.

� If you are a C++/Perl programmer, investigate
C++/Perl solutions comparable with Tomcat.

� Write code that permits one to view log and/or
configuration files for Tomcat remotely.

Annotated Bibliography

Java Web Services by Chappell & Jewell – an O'Reilly Book. Useful in conjunction with other books.

Web Services – Essentials by Cerami – an O'Reilly Book. As above – less of a Java spin, but still, plenty
of Java.

Java Web Services in a Nutshell by Topley – an O'Reilly Book. Very good reference work. You need it.

Professional Java XML by Ahmed, et al. - a Wrox book. Very good collection of tutorials. Highly
recommended.

Java & XML by McLaughlin – an O'Reilly book. Less expansive than the above.

Tomcat – The Definitive Guide by Brittain & Darwin – valuable reference

Bitter Java – Bruce Tate, a Manning Book – Absolutely Required Reading on Java Antipatterns

